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We advance an IS0(3, l IN) extended Poincar6 supergravity and an OSp(N 14) 
de Sitter supergravity by using the supergauge action mechanisms of supergroups 
on the superspaces and by treating the gravitational parts of these two super- 
gravities as the gauge theories of gravity, give a new matrix representation of 
IS0(3, 11 N) generators and a new one of OSp(N 14) ones, obtain the commuta- 
tion and anticommutation relations of iso(3, l IN) and osp(NI4) superalgebras, 
construct the actions of these supergravities and discuss some other problems. 
A particle multipletg method based on the supersymmetry transformation is used 
and the probable numbers of particles of different helicities in the two super- 
gravities are given. 

1. I N T R O D U C T I O N  

Grav i t a t i ona l  masses  and  par t ic les  exist  in space- t ime.  We t reat  space-  

t ime,  g rav i t a t iona l  masses ,  and  par t ic les  as a superun i f i ed  phys ica l  system, 
which  possesses  three  k i n d s  o f  gauge  symmetr ies ,  space- t ime  symmetr ies ,  
in terna l  symmet r i es  (Langacke r ,  1981), and  supe r symme t ry  (Sohnius ,  1985). 
These  symmet r i es  o f  the superuni f ied  system are r ep resen ted  by  the gauge  
s u p e r g r o u p  G. Let us deno te  the space- t ime  m a n i f o l d  by  M ;  thus,  V X  ~ M, 3 
a supe r space  s p a n n e d  by  a set o f  phys ica l  (or  ma thema t i ca l )  quant i t ies  
u n d e r  G. We deno te  the superspace ,  (Wess  and  Zumino ,  1978) by  U;  U 
can be  chosen  as 

U=- V @ G  0 

where  V is the  a s soc ia t ed  Bose space  for  the  gauge  ac t ion  o f  the  gauge  
theory  o f  gravi ty  (Changgu i  and  Bangqing,  1985), and  O is the Fermi  space  

o f  d i m e n s i o n  N x L. 
I f  we take  U as a supe rvec to r  space ,  then a supervec to r  field X will 
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exist and X can be written as 

X ~ = (~~ 0'~) 

where x A ~ u ,  ~a6V  ( a = l , . . . , / ) ,  0 1 6 0  ( c ~ = l , . . . , L ;  i = I , . . . , N ) .  
Here i are the internal symmetry indices; i will supply some irreducible 
representations to the group of grand unified theories; the o~ are usually 
taken as Majorana spinor indices. Then a = 1 , . . . ,  4. The a are the gauge 
transformation indices of  space-time. The gauge transformations of  super- 
group G can be realized by the local action of  G on X a. The local geometric 
invariant quantities under the gauge transformations can be chosen as the 
unified gauge action; in this way we can obtain some superunified theories. 

We take G as IS0(3, 11N), OSp(N[4), and SU(2, 2[N) ,  respectively; 
the corresponding superspaces a r e  E(3,1 ) 0IS0(3,1[N) O, E(3,2 ) OOSP(NI4 ) ~), 
and E~4.2) ~SU~2,21N) O, respectively. Thus, the Poincar6, de Sitter, and the 
conformal extended supergravities (van Nieuwenhuizen, 1981) can be 
obtained. In this paper  we mainly discuss the first two. One may refer to 
Changgui and Bangqing (1986) for the conformal extended supergravity. 

2. AN ACTION OF IS0(3, l I N )  EXTENDED 
POINCARI~ SUPERGRAVITY 

In this supergravity (van Nieuwenhuizen et al., 1978) the space-time 
transformation group IS0(3, 1) and the internal transformation group 
SO(N) ( N  > 1) both are subgroups of supergroup IS0(3, l IN) .  We denote 
the generators of  superalgebra iso(3, 1]N)  as 

TAB = (M.b, Pa, Ei, H~) 

representations of  which are chosen as 

L o IoJ' P~ 0 [0J' Ei= 

0 OiR~i)~O 
u'~= o 

i(CL)~(i ) 0 
0 

0 

�89  Ys)]~, " " �9 �89  y5)]~4 

0 

�89 + "Y5)1~ 

0 0 

�89 + ~'5)4o 

0 
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Here 

(3'a, Y b ) = 2 ~ a b ,  ~ a b  = diag(1, 1, l , - 1 )  

3'5 iTIT2T33'o, 0tab ~[3'a, 7b],  R=�89 

the gi are S U ( N )  generators, C = 3'0 is the charge conjugate matrix, and 
(i) runs over 1, 2, 3, 4, columns (rows) at each located row (column): 

We find the superalgebra relations for iso(3, I IN) as follows: 

[Mob, Mcd]} ~ iso(3, 1), [H~ M~b] = -i(o'ob)~r3H~ 
[Mab, Pc] 

[ E,, Ej] k E = =f/ j  k, [H~,  Ej] ( g y k H ~  

{ H i ,  H ~ } =  ' i j  a -~,~ (3" C),~P,~ 

Now we introduce the supergauge potential 

A B  ab a i -- ia B~ = (B~ , V~, E~, A~) 

corresponding to the I S 0 ( 3 ,  1IN)  supergroup generators 

TAB = (Mab, Po, Ei, Hio,) 

respectively, into our theory. Defining the supergauge covariant derivative 

A B  D ~ = a ~  + B~ TAS 

we get the formula of supergauge field strength RAft as 

A B  A B  A B  1c, A B  I ~ C D  IsIEF R . ~  = O.B~ - O ~ B .  -~ ~t CD.EFL*tz u .  

where AS ffCD, EF a r e  the structure constants of supergroup I S 0 ( 3 ,  l IN ). Thus, 
we can write the supergauge field strength components corresponding to 
the generators ZAS as follows: 

ab ab  R . . ( M )  = F~.. 

i j k Ri. , , (E)  = O.E i. -O.Ei~ + f j k E v E .  

J ~  +~(A~3' A.~ +/z ~--~ p) R . . ( P )  = ~ I - 

R ~ . i ( H  ) = ~ , . i D ~  + E ~ ( g k ) i j m v j  - p., ~ l: 

where 

F~b ob . . . .  ,b 

a a a b J~ .  = c9~ V~ + B~h V,, - Ix o v 

r D~ = a~ - B~ab O'ab 
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A Yang-Mills type of Lagrangian of this system can be constructed as 
1 ab I~u a ~u i la.v Lgauge = -~{R.~,(M)Rab(M)+ Ru.(P)Ra (P)+ R. , . (E)R,  (E) 

+ R.~,(H) CR'~'(H)} 

where a > b. 
We introduce the invariant geometric quantity/{, the curvature scalar 

of the gauge action space (Changgui and Bangqing, 1985) /7(3.1), into the 
theory; the Lagrangian of the system can be written as 

L =/~ + tgaug  e 

Then the action of this system is 

S = [ L~---ff d 4 x  

,1 

3. SUPERSYMMETRY PARTICLE MULTIPLETS 
IN IS0(3,  IIN) SG 

We simply denote all helicity operators by the symbol ,]. In the super- 
algebra iso(3, I[N) the relations 

[ H / ,  M o b ]  " = -z(~r:b):pH~ 

are a spinor representation of the Lorentz group S0(3,  1); the cr~b are 
generators of the spinor representation. Since the space components of M.~ 
represent the spin operators in the spinor representation, we have the 
relations 

[ H i ,  J] = i(o" K ) ~ H ~  (1) 

Choose a suitable representation; from (1) we can obtain 

, ^ , ,  { : = 2 , 4  
[Ha,  J] 1, 3 = :t: ~H~ (2) 

Now we introduce the eigenstate equation 

.b>= al.,'> (3) 

where a = 0, +~, • +3, +2, • ~ 3 , . . .  are eigenvalues of J; from (2) and 
(3) we have following eigenequations: 

1 i f ~ ' =  1,3 
JH':IJ)=(J+2)H'IJ) I z : 2 , 4  

^ i j JH,H~,[J) = (J • 1)H~H~,IJ) r, r'= 1, 3 
t r, z ' = 2 , 4  

{, jg~ s~,s~,lj) = ( j  3 i j k (4 )  + J H . H . , H . J J )  r, r ,  z"= 1, 3 
"r, T r, T " = 2 , 4  
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From the above eigenequations we know that Hi~, H i  are the operators 
raising helicity 1 and H~, H i  are the operators lowering helicity ~. We take 
a frame associated with the discussed particle; the ant icommutat ion relations 
in the superalgebra iso(3, 1IN) in this frame become 

{ H i ,  H~} = �89176 (5) 

where Po is the momentum component  of  the particle, 

I: :J [('Y~ = - 1  - 1  

- - i  i - - i  If we set H~ = - H 2 ,  H4 = H~,  then expression (5) can be written as 

( H i ,  H'p} =0 ,  {IYI~ IiI'p} = O, {IrI~ H j} = i P~ ~o-p (6) 
' 2 

Here or, p = 1, 2; H i ,  IYt~p are both two-component  spinors. From the first 
two expressions of  (6) we can obtain 

i i - - i  - - i  H~H~ = HpHp = 0  (7) 

Thus, we conclude that if the same supersymmetry transformation is 
carried out successively twice, we do not obtain a new state. Therefore, the 
sum total of  the eigenstates of  distinct helicities is not larger than N and 
the max imum of helicity will be constrained. 

For example,  we take H I  and H~ as the representatives and discuss 
the multiplicities of  helicity multiplets. For this purpose the maximum and 
the minimum spin states are defined as 

�9 I lJ)  = J~x l J )  (8) 

and 

[llJ):  Jm~.lJ) (9) 

where Jmax = N /4 ,  JmJ, = - N / 4 .  Evidently, if we let H~ (i = 1 , . . .  N )  act 
on expression (8) successively, a series of  multiplets may be obtained by 
using expression (2). The helicities of  these multiplets are N/4 ,  N / 4 - � 8 9  
0 , . . . ,  - N / 4 + �89 - N / 4, respectively. 

Similarly, if HI  (i = 1 , . . . ,  N )  acts on expression (9) successively, we 
obtain a series of  multiplets, the helicities of  which are - N / 4 ,  - N / 4  
+ � 8 9  0, . . . ,  N / 4 - � 8 9  N /4 ,  respectively. A state whose helicity is higher 
than N / 4  or lower than - N / 4  cannot be obtained because of expression 
(7). The maximal spin state is usually considered as a one-particle state. I f  
each H~ (i = 1 . . . .  , N )  acts on expression (8) once respectively, we obtain 
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the multiplet, the spin of  which is Jmax--�89 and its multiplicity is C ~ .  If  
each H~ (i = 1 , . . . ,  N)  acts on expression (8) twice respectively, the spin 
obtained is Jmax--1 and its multiplicity is C2 N. In this way we can obtain 
a series of  multiplets. 

The multiplicity of  the multiplet whose helicity is Jma• �89 is C ~ ,  which 
is the same as the dimensionality of the antisymmetric tensor representation 
of  the gauge group of grand unified theory S O ( N ) .  When other characteristic 
numbers N '  (N'_< N)  are considered, a series of  supergravity theories 
corresponding to every N '  can be obtained. In these theories the multiplicity 
of the multiplet whose helicity is Jma•189 is also C1N. By using the Young 
diagrams, the multiplicities whose characteristic numbers are N '  ( N ' -  < N)  
and helicity is Jmax--t/2 (t  = O, 1 , . . . ,  N ' )  are as follows: 

t =  0 1 2 3 

C o  . . .  

Here dimensionality C, u '=  N ' /  t! ( N ' -  t), N '< - N. 

�9 . . N ! 

[] 

�9 �9 

[] 

C ~  

We put suitable particles in the multiplets; then the particle multiplets 
in the relevant supergravity can be obtained. For example, we take the cases 
where N = 8 and N = 10; the particles in the relevant supergravities are 
listed in Tables I and II. 

From the third expression of (6) we have 

i i 
{ H ' , , H ~ 4 } = { H I ,  H~,}=-~ P, {H~,H~3}={H~3, H~2}=--~ P (10) 

Table I 

Number of particles 

N' j = 2  j=3  j = l  j=�89 j=O j = - � 8 9  

1 C~)=I Cll=l 
e c~=1 c~=e c 2=1 
3 c~o = 1 c)  = 3 c~ = 3 c~ = 1 c~ = 1 
4 Co4=1 C4=4 62 =4 6 C~:4 2C~:2 C3_4a_ 
5 C~:I  C~=5 C~=I0 C~+C~=ll 2C45= 10 C~+C~=ll 
6 C6=1 C~=6 C~+C6=16 C6+C~=26 2C46=30 C6+C6=26 
7 C7=1 C7+C7=S C27+C7=28 C7+C7=56 2C47 =70 C7+C7=56 
8 C~= 1 C~ =8 C~ =28 C~ = 56 C 8=70 C~ = 56 
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Number of particles 

N' J=~ J=2 J=~ J = l  J : � 8 9  J : 0  J=- �89  

1 1 1 
2 1 2 1 

3 1 3 3 1 
4 1 4 6 4 1 1 
5 1 5 10 10 5 2 5 

6 1 6 15 20 16 12 16 

7 1 7 21 36 42 42 42 

8 1 8 29 64 98 112 98 

9 1 10 45 120 210 252 210 

10 1 10 45 120 210 252 210 

From the above expressions, we know that an operator raising helicity �89 
and an operator lowering helicity �89 act successively and respectively in 
different sequences on a state; we can obtain two states, the difference of 
which in space-time is +(i/2)Po. In the associated frame, +(i/2)P~ becomes 
+(i/2)Po. If a particle exists in an original state, by a helicity state transfor- 
mation, the position of  the particle will undergo a translation. 

4. AN ACTION OF OSp(NI 4) EXTENDED DE SITrER SG 

The de Sitter space-time transformation group DS(3, 2) and the internal 
transformation group SO(N) are both subgroups of supergroup OSp(N[4) 
in this SG (West and Stelle, 1979). We denote generators of superalgebra 
OSp(N[4) as ~aB = (Mab, Pa, if, i, 0 / ) ;  a representation of these generators 
can be found as 

L o IoJ'  =L 0 IOJ' 

0 

0 
iC~,(i) 

0 

0 i~(i)~ o][ oO 
iC~l .. . iC~4 

0 

i~1,~ 
0 0 

i64~ 
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and we find that the nonzero superalgebra relations of ~AB a r e  

[ Mab, Mcd ] = --i~adMbc + " " " , [ Mab, tic] = in.crib- inbcfi~ 

[0'2,  M o d  " ' ' = - ~ ( o - o b ) ~ o ~  [ o o ,  ~o] = ~, 7-, . . . ,  , -- ~tYa )~f3u~ 

[ /5,  fib] = --M,~b, [E,, Ej] = f y E K ,  [O~, EK] = (gK)'JO~ 

( o ' ~ ,  o ~ , }  = 'j ob ,, ., z6 {2(Co" ) ~ M . b + ( y  C ) , ~ P a }  

Here the subalgebra ds(3, 2) of the algebra OSp(N[4) is constructed from 
the first, second, and fifth expressions�9 Let 

. .  , , E ~ , , Z ~ )  

be the supergauge potential corresponding to the generators 

?AB = (Mab, fi~, E,, 0,,~) 

respectively; then we have the supergauge field strength 

I~AB=o,~BAB AB ~AB hCOhee 
- a u B p  - .4- Jt CD, EF~,p.  .t~, v - -p .v  

A A B  where FcD, Ep are structure constants of supergroup OSp(N[4). Thus, we get 

Aab ~ab ^ a b  ab ~ab __2~.  ( C o a b C - l ) z  u R ~ ( M )  = R ~ ( M ) g ~ +  R~(M)~ .p  = F ~ +  V ~  

R~u(P)gra+ R,.~(P)~p = - J ~  - R ~ ( P )  = ~' ~'~ 

/~.,O[a/z ] = E . i D  ~ +-~ Z., ~ + E # (gK )UE.y --/z ~ u 

~ K  K K K i j Rv.(E)  =O~E~ - a E ~  +fo E~E~ 

where 

^ a b  ^ a  ~'b ~b  V~. = V~ V. - ~'~ V~ 

a~ V,,+ B~b V, , - tz  <-> u 

A Yang-Mills type of Lagrangian of the de Sitter SG can be constructed as 

s --�88 ~ , A " " )  

= - ~ { R ~ . ( M ) R . b ( M ) +  Rg.(P)Ra (P) 

+R~,.(E)R, (E)+R~.,OEOtz]CR O[O/z]} ( a > b )  
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We can write /~ in the form 

/~ = Lgra q- Lsu p q- Lin t %- Lg . . . . .  p 

where 
"" - -  l l~,ab r~?lzv __ 1 ~ a b  "~ ,~v 1 " a  "~p,u - -  l ~ , a b  ~Zizu  

Lgra ~-- 4 - - t x v ~ t  a b  4 %.~ V~b --aJ~.J~ 2 a t x v  V a b  

s 1 * ~l, zu i  1 ~ a b  A, t tu  -aRu,.,,O[Otz]CR O[OtzJ-aR~,,(M)~upRob(M)sup 
1 A a  ~ * t z  v A -aR,,~(P)su~Ro ( P ) ~  

�9 1 ^ i  "p~L, Li~=-aR.~(E)R,  (E) 

..... p = -~R,,,,(M)~,.,Ro,~ (M)~.p-~R,~,~(P)~,.oRo (n),up 
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Here Lgra is the Lagrangian of de Sitter gravity (Changgui et al., 1990), in 
which the first two terms are Einstein and cosmology terms of de Sitter 
gravity, respectively; thereby the de Sitter gauge theory of gravity and 
general relativity can be contained in the SG. The action of this SG has the 
form 

= f s cl"x 

5. N U M B E R S  O F  P A R T I C L E S  IN OSp(N[4) S U P E R G R A V I T Y  

The space-time discussed in this SG is the de Sitter one; the panicles 
described in the SG are moving in a de Sitter sphere which possesses 
constant curvature. We still take a frame associated with the particle dis- 
cussed. In this frame the anticommutation relation of  the algebra OSp(N[4) 
becomes 

{O~, O~} = 6 u{2(Ccr~v) ~ M ~  - (y~ (11) 

where u, v = 1, 2, 3. From the rhs of expression (11), we get' 

{ O / a ,  O/a} = 0, {Oil, O~} =0,  {O~, O~}=0 (12) 

In expression (6) the above relations are included, but the relation 

{O~,,O~,}#0, ( a = l , , V = 3  or a = 2 ,  a ' = 4 )  (13) 

is the difference of them. From expression (11) and the last one, we know 
that if two operators of  expression (13) act on a state in opposite sequences 
respectively and successively, the two states obtained will differ in an SO(3) 
rotation in a three-dimensional space, besides in a de Sitter translation +iPo 
in de Sitter space. This is one of the differences between OSp(NI4) SG and 
IS0(3, 1IN) SG. By using the results obtained above, the method determin- 
ing the number of particles in IS0(3, IIN) SG can be extended in OSp(NI4) 
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SG. But the number of probable states having the same helicity will increase 
in OSp(NI4) SG and the differences of these states moving in space-time 
will become more complex in OSp(N]4) SG. 
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